Node的异步I/O原理

事件循环

首先,我们着重强调一下Node自身的执行模型——事件循环,正是它使得回调函数十分普遍。
在进程启动时,Node便会创建一个类似于while(true) 的循环,每执行一次循环体的过程我们称为Tick。每个Tick的过程就是查看是否有事件待处理,如果有,就取出事件及其相关的回调函数。如果存在关联的回调函数,就执行它们。然后进入下个循环,如果不再有事件处理,就退出进程。

在每个Tick的过程中,如何判断是否有事件需要处理呢?这里必须要引入的概念是观察者。每个事件循环中有一个或者多个观察者,而判断是否有事件要处理的过程就是向这些观察者询问是否有要处理的事件。

在Windows下,这个循环基于IOCP创建,而在*nix下则基于多线程创建。

请求对象

对于Node中的异步I/O调用而言,回调函数却不由开发者来调用。那么从我们发出调用后,到回调函数被执行,中间发生了什么呢?事实上,从JavaScript发起调用到内核执行完I/O操作的过渡过程中,存在一种中间产物,它叫做请求对象。

从JavaScript调用Node的核心模块,核心模块调用C++内建模块,内建模块通过libuv进行系统调用,这是Node里经典的调用方式。

这里libuv作为封装层,有两个平台的实现,实质上是调用了uv_fs_open() 方法。在 uv_fs_open() 的调用过程中,我们创建了一个 FSReqWrap 请求对象。从JavaScript层传入的参数和当前方法都被封装在这个请求对象中,其中我们最为关注的回调函数则被设置在这个对象的 oncomplete_sym 属性上。

对象包装完毕后,在Windows下,则调用 QueueUserWorkItem() 方法将这个 FSReqWrap 对象推入线程池中等待执行。

由JavaScript层面发起的异步调用的第一阶段就此结束。JavaScript线程可以继续执行当前任务的后续操作。当前的I/O操作在线程池中等待执行,不管它是否阻塞I/O,都不会影响到JavaScript线程的后续执行,如此就达到了异步的目的。

请求对象是异步I/O过程中的重要中间产物,所有的状态都保存在这个对象中,包括送入线程池等待执行以及I/O操作完毕后的回调处理。

执行回调

组装好请求对象、送入I/O线程池等待执行,实际上完成了异步I/O的第一部分,回调通知是第二部分。

线程池中的I/O操作调用完毕之后,会将获取的结果储存在 req->result 属性上,然后调
用 PostQueuedCompletionStatus() 通知IOCP,告知当前对象操作已经完成。

在这个过程中,我们其实还动用了事件循环的I/O观察者。在每次Tick的执行中,它会调用IOCP相关的 GetQueuedCompletionStatus() 方法检查线程池中是否有执行完的请求,如果存在,会将请求对象加入到I/O观察者的队列中,然后将其当做事件处理。

I/O观察者回调函数的行为就是取出请求对象的result 属性作为参数,取出 oncomplete_sym 属性作为方法,然后调用执行,以此达到调用JavaScript中传入的回调函数的目的。

Windows下主要通过IOCP来向系统内核发送I/O调用和从内核获取已完成的I/O操作,配以事件循环,以此完成异步I/O的过程。在Linux下通过epoll实现这个过程。